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In both Boussinesq and non-Boussinesq cases the Green’s function of internal 
gravity waves is calculated, exactly for monochromatic waves and asymptotically 
for impulsive waves. From its differentiation the pressure and velocity fields 
generated by a point source are deduced. By the same method the Boussinesq 
monochromatic and impulsive waves radiated by a pulsating sphere are investigated. 

Boussinesq monochromatic waves of frequency w < N are confined between 
characteristic cones 8 = arccos (WIN) tangent to the source region (N being the 
buoyancy frequency and 8 the observation angle from the vertical). In  that zone the 
point source model is inadequate. For the sphere an explicit form is given for the 
waves, which describes their conical l /& radial decay and their transverse phase 
variations. 

Impulsive waves comprise gravity and buoyancy waves, whose separation process 
is non-Boussinesq and follows the arrival of an Airy wave. As time t elapses, inside 
the torus of vertical axis and horizontal radius Wt/p for gravity waves and inside the 
circumscribing cylinder for buoyancy waves, both components become Boussinesq 
and have wavelengths negligible compared with the scale height 2 / p  of the 
stratification. Then, gravity waves are plane propagating waves of frequency 
Ncos 8, and buoyancy waves are radial oscillations of the fluid a t  frequency N ;  for the 
latter, initially propagating waves comparable with gravity waves, the horizontal 
phase variations have vanished and the amplitude has become insignificant as the 
Boussinesq zone has been entered. In this zone, outside the torus of vertical axis and 
horizontal radius Nta, a sphere of radius a < 2 / p  is compact compared with the 
wavelength of the dominant gravity waves. Inside the torus gravity waves vanish by 
destructive interference. For the remaining buoyancy oscillations the sphere is 
compact outside the vertical cylinder circumscribing it, whereas the fluid is quiescent 
inside this cylinder. 

1. Introduction 
Internal gravity waves in density-stratified fluids, and the similar inertial waves 

in rotating fluids, markedly differ from the more classical acoustic or electromagnetic 
waves. They are anisotropic, and dispersive. In the monochromatic regime hyperbolic 
differential equations, rather than elliptic equations, govern their propagation. As a 
consequence even the classical Fermat’s principle does not hold for them (Barcilon 
& Bleistein 1969). 
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The group velocity theory (e.g. Lighthill 1978, $4.4 ; Tolstoy 1973, $2.4) proved to 
be an ideal means of studying the changes such unusual properties induce on wave 
propagation. Thus, the knowledge of such phenomena as scattering (Barcilon & 
Bleistein 1969; Baines 1971) and guiding (Brekhovskikh & Goncharov 1985, $ 10.5) 
of internal or inertial waves has now reached a degree of refinement comparable with 
that for classical waves. Internal or inertial wave generation remains, on the other 
hand, less known. Lighthill (1960, 1965, 1967) has developed in Fourier space and 
time a theory for the generation of anisotropic dispersive waves, which is especially 
successful in dealing with internal waves (Lighthill 1978, $54.8-4.12). Its crux is, 
again, group velocity. As for any Fourier-transform-based approach, Lighthill’s 
theory primarily applies to initial perturbations, and oscillating or uniformly moving 
sources. 

In  this paper we initiate the development of an alternative theory of internal wave 
generation, which we intend to be complementary to his in that the waves are 
investigated in real space and time. Greater attention can, accordingly, be paid to 
sources with arbitrary time dependence ; examples are arbitrarily moving sources, 
which will be considered in a forthcoming paper. Our approach is based upon the 
Green’s function method (Morse & Feshbach 1953, ch. 7):  the internal wave field is 
built as a superposition of elementary impulses, each of which is represented by the 
Green’s function. Although the theories of acoustic (cf. Pierce 1981) and 
electromagnetic (cf. Jackson 1975) wave radiation largely rely upon Green’s 
functions, no attempt has been made before to develop a similar theory of internal 
wave radiation, except in some recent Soviet works where it has been sketched 
(Miropol’skii 1978 ; Sekerzh-Zen’kovich 1982), or introduced to solve particular 
problems (Gorodtsov & Teodorovich 1980, 1983). 

As a preliminary step towards this aim, the present paper is devoted to the Green’s 
function itself. The fluid is assumed unbounded and non-rotating, the buoyancy 
frequency constant and the internal waves three-dimensional. First a synthesis and 
a completion of previous scattered and sometimes contradictory results about the 
Green’s function are given. From them criteria are secondly deduced for the validity 
of two approximations of crucial importance in internal wave theory: the point- 
source model and the Boussinesq approximation. To achieve this aim the internal 
wave field of a point source is deduced from the Green’s function, and it is compared 
with that of a pulsating sphere. 

In  $2 we review the existing literature about the Green’s function of internal 
waves. Then we derive in $3  their equation, and discuss the radiation condition for 
them. The properties of plane internal waves are recalled in $4 and applied to 
monochromatic and impulsive point sources, for the interpretation of results to 
follow. Section 5 describes the exact calculation of the monochromatic and impulsive 
Green’s functions. An asymptotic evaluation of the latter, only obtained in $5  in 
integral form, exhibits in $ 6  the splitting of Boussinesq internal waves into gravity 
waves and buoyancy oscillations. The mechanism of the splitting is seen to be non- 
Boussinesq, and criteria are given for the validity of the Boussinesq approximation 
for each component. The analysis of gravity waves and buoyancy oscillations is 
continued in $7, by deducing from the Green’s function the pressure and velocity 
fields radiated by a point mass source. In $8 a similar calculation of the Boussinesq 
internal waves generated by a pulsating sphere is made. Simultaneously the validity 
of equivalent point sources is examined, for either monochromatic or impulsive 
pulsations. 
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2. Bibliographical review 
Investigations of the Green’s function of monochromatic internal waves generally 

involve Fourier transform methods. In this way Sarma & Naidu (1972a, b),  omitting 
the use of any radiation condition, then Ramachandra Rao (1973, 1975) and Tolstoy 
(1973, §7.3), restoring it, derived non-Boussinesq internal waves generated by point 
mass and force sources. A similar calculation of the Boussinesq Green’s function has 
been achieved by Rehm & Radt (1975), and partially performed by Miles (1971), 
Sturova (1980) and Gorodtsov & Teodorovich (1980, 1983) during studies of internal 
wave radiation by moving point sources. Unfortunately these results are often 
contradictory, like Ramachandra Rao’s (1973, 1975) ones, which do not even 
coincide with each other. 

A different angle of attack has more recently been adopted by some Soviet 
workers, who considered directly the Green’s function of Boussinesq impulsive 
internal waves without resorting to any monochromatic intermediate step. 
Teodorovich & Gorodtsov (1980) proved Miropol’skii’s (1978) study by classical 
function theory to lead to erroneous conclusions, and Sekerzh-Zen’kovich’s (1979, 
1981) approach by generalized function theory to be the only valid one. The latter 
writer proposed both exact and asymptotic results. Zavol’skii & Zaitsev (1984) then 
investigated the physical meaning, and applicability, of the asymptotic result. In so 
doing they but recovered an analysis by Dickinson (1969) who, as a particular case 
of acoustic-gravity waves, i.e. internal waves coupled with acoustic waves by 
compressibility, had performed a thorough asymptotic analysis of the Green’s 
function of Boussinesq impulsive internal waves. 

In a more general fashion a third series of studies have been devoted to the Green’s 
function of acoustic-gravity waves and become, once the incompressible limit has 
been applied to them, relevant to non-Boussinesq internal waves. Pierce (1963), by 
a shrewd formulation of the radiation condition, Moore & Spiegel (1964), by 
Lighthill’s (1960) asymptotic method, and Grigor’ev & Dokuchaev (1970), by the use 
of Fourier transforms, independently obtained three coinciding expressions of the 
monochromatic Green’s function. Kato (1966~)  made a more detailed examination 
of the equivalence of the first two derivations. He later (Kato 19663) deduced from 
the group velocity theory, as did Cole & Greifinger (1969) from a stationary phase 
analysis, the wavefront structure of the impulsive Green’s function. Then, Dickinson 
(1969) and Liu & Yeh (1971) derived the asymptotic expansion of the associated 
waves while Row (1967) described a hydrostatic, that is low-frequency, approxi- 
mation for them. 

Experiments about the generation of internal waves have involved bodies of finite 
dimensions, and various shapes and motions. Monochromatic oscillations of a 
cylinder (Mowbray & Rarity 1967; Kamachi & Honji 1988) or a sphere (McLaren 
et al. 1973), impulsive oscillation of a cylinder (Stevenson 1973) and free motion of a 
displaced solid (Larsen 1969) or fluid (McLaren et al. 1973) sphere have all been 
investigated. 

Few theoretical studies consider the generation of internal waves by sources of 
finite size from a general point of view. All of them are asymptotic and rely on far- 
field or large-time hypotheses. Under the Boussinesq approximation this problem 
has been solved by Lighthill (1978, $4.10) and Chashechkin & Makarov (1984) for 
extended monochromatic and transient mass sources, respectively, and Lighthill 
(1978, $4.8) and Sekerzh-Zen’kovich (1982) for initial perturbations of the stratified 
medium. 
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Most theoretical works deal with the motion of rigid bodies of specified shape. 
Bretherton (1967) and Grimshaw (1969) investigated the generation of Boussinesq 
internal waves by the impulsively started uniform motion of respectively a cylinder 
and a sphere. Hendershott (1969) similarly considered the impulsively started 
monochromatic pulsations of a sphere, and Larsen (1969) its free oscillations ; Larsen 
however focused his attention on the oscillations themselves rather than the waves 
they produce. All subsequent works have been devoted to steady monochromatic 
internal waves, radiated by a cylinder (Appleby &, Crighton 1986), a sphere (Appleby 
6 Crighton 1987), a spheroid, either considered explicitly (Sarma & Krishna 1972) or 
under the slender-body approximation (Krishna & Sarma 1969), and a slender body 
of arbitrary axisymmetric shape (Rehm & Radt 1975). Of the monochromatic studies 
only the latter two assume Boussinesq internal waves. 

3. Statement of the problem 
3.1. Internal wave equation 

In an unbounded incompressible fluid with uniform stratification, that  is where the 
undisturbed density po varies exponentially with height z according to 

P o ( 4  = Po0 e-@, (3.1) 

the buoyancy (or Brunt-Vaisala) frequency N =  (gp); is constant. The small- 
amplitude internal waves generated by a mass source of strength m per unit volume 
are described by the linearized equations of fluid dynamics (Brekhovskikh & 
Goncharov 1985, Q 10.1 ; Lighthill 1978, $4.1) : 

av 
Po- at = -WP- me,, 

W - v  = m, (3.3) 

_ -  a/) - P o P f l r .  at (3.4) 

Here v ,  P and p are respectively the velocity, pressure and density perturbations, and 
e, a unit vector along the z-axis directed vertically upwards. Subscripts h and z will 
hereafter denote horizontal and vertical components of vectors and operators. 

Inferring from (3.2) that the motion is irrotational in the horizontal plane, we 
express vh and P in terms of a horizontal velocity potential q5 (Miles 1971), eliminate 
p using (3.4) and remark that the resulting system of equations for v, and q5 is 
satisfied if 

with 
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V 2  = a2/ax2 + a2/ay2 + a2/az2 and Vk = a2/ax2 + a2/ay2 are respectively the three- and 
two-dimensional Laplacians. The ‘internal potential ’ @ generalizes to uniformly 
stratified fluids the velocity potential of homogeneous fluids, and simultaneously 
exhibits the creation of vorticity by the stratification. Its introduction dates back to 
Gorodtsov & Teodorovich (1980) for Boussinesq internal waves, and Hart (1981) in 
a more general context. 

The Boussinesq approximation consists of neglecting the inertial effects of density 
variations compared with the buoyancy forces they create. It is equivalent to setting 
p + 0 and g + co with g/3 = N 2  held fixed in the preceding equations. Lighthill (1978, 
$4.2) pointed out that, when non-Boussinesq effects are taken into account, the 
compressibility of the fluid should be also, transforming internal waves into 
acoustic-gravity waves. Studies of the generation of these waves (e.g. Liu & Yeh 
1971) showed them, however, to be made of the superposition of low-frequency 
nearly incompressible gravity waves and high-frequency acoustic waves slightly 
affected by gravity, constituting two distinct wavefronts with different propagation 
velocities. Therefore, non-Boussinesq incompressible internal waves have an 
existence of their own. As acoustic-gravity waves are approached, whose 
characteristics are the buoyancy frequency N ,  the sound velocity c and the acoustic 
cutoff frequency w,, incompressibility means the limiting process (cf. Tolstoy 1973, 
$2.2) c+ co and w, + co with wa/c+&3 and N held fixed. 

Removing from u, P, p and I) density factors ensuring vertical conservation of 
energy, according to 

(I), u )  = e+flz/2 ( f , u ’ )  and ( P , p )  = e-flz/2(P,p’), (3.9) 
simplifies the internal wave equation (3.8) to 

with now 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Hereafter u’, P ,  p‘ and ~‘ will implicitly be considered and primes will be omitted. 
While the extraction of density factors reduces non-Boussinesq effects upon the 
propagation of internal waves to O(p”) (Lighthill 1978, §4.2), there remain O(p) 
effects upon their generation (Appleby & Crighton 1986, 1987). This is exhibited by 
the non-Boussinesq term on the left-hand side of (3.10), and the source term on its 
right-hand side. 

3.2. Green’s function and radiation condition 
From the mathematical point of view, the Green’s function G(r,  t )  of internal waves 
is defined as the Green’s function of their operator, by 

[ $ ( V 2 - i P ) + N 2 V E  1 G(r , t )  = S(r)S( t ) .  (3.14) 

It physically represents the internal potential generated by an impulsive point mass 
source releasing a unit volume of fluid, from which the corresponding velocity, 

15 FLM 231 



444 B. Voisin 

pressure and density fields are deduced by (3.1 1)-(3.13). Accordingly, we shall refer 
to i t  as an impulsive Green’s function and also introduce a monochromatic Green’s 
function G(r, w ) ,  as the internal potential generated by a monochromatic point 
source. so that 

(3.15) 

They are related to each other by Fourier transformation in time, according to 

G(r,  w )  = G(r, t)  e-i”t dt = FT[G(r, t)], ( 3 . 1 6 ~ )  I 
G(r, t)  = - G(r, w )  eiwt dw = FT-’[G(r, w ) ] .  

2x ‘ I  (3.16b) 

In  fact, neither (3.14) nor (3.15) enables the complete determination of the Green’s 
function, in that their solutions contain arbitrary linear combinations of free waves 
(corresponding to zero source terms). Similarly the presence, in inversion formula 
(3.16b), of singularities of the integrand over the real axis makes the evaluation of 
the integral ambiguous. In  both cases a radiation condition must be added, which 
states that all waves originate a t  the source, none ‘coming in from infinity’ or having 
been generated before the source has begun to  emit. So far, three different forms of 
this condition have been used to deal with internal wave generation : (i) Sommerfeld’s 
radiation condition, (ii) Lighthill’s radiation condition and (iii) Pierce’s and Hurley’s 
radiation condition. 

Sommerfeld’s radiation condition operates in the space domain, and expresses that 
all waves must be outgoing far from the source region. I ts  analytical form remains, 
for waves with fixed propagation velocity, simple (cf. Pierce 1981, $4.5). For internal 
waves it must, however, be replaced by the requirement that the group velocity 
point outward, a requirement which is written differently for each plane wave 
composing their spectrum. Under the geometrical approximation waves are locally 
plane and this condition takes on a simple form again (Barcilon & Bleistein 1969). 
When diffraction effects take place the whole spectrum must be taken into account 
and the radiation condition must be written, either individually for each plane wave 
to be later superposed (Ramachandra Rao 1973), or simultaneously for all plane 
waves in which case unwieldy integral equations are involved (Baines 1971). 

The radiation condition is more conveniently expressed for internal waves in the 
time domain as the principle of causality : no waves can be radiated before the source 
has been ‘switched on’. Lighthill, Pierce and Hurley proposed different ways to 
apply causality to steady monochromatic waves. Lighthill (1960, 1965, 1967, 1978, 
$4.9) adds to the frequency w a small negative imaginary part --8 which he later 
allows to  tend to zero; he interprets this process as a gradual exponential growth of 
the source from its switching on at t = - 00 to  its present state. Pierce (1963), and 
independently Hurley (1972), consider a source abruptly switched on a t  t = 0;  they 
require that time Fourier transforms such as G(r,  w )  be analytic in the lower half of 
the complex w-plane and tend to zero as Im w + - 03, so as to ensure that G(r,  t) is 
zero for negative times. 

According to the causal radiation conditions the integration path in (3.16 b) must 
lie below the real singularities, which we write as 

G(r, w )  eiwtdw = FT-’[G(r, w ) ] .  
2x 

(3.17) 
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This definition is described by Morse & Feshbach (1953, pp. 46M61) as the natural 
extension of Fourier analysis to non-square-integrable functions, whose Fourier 
transforms only exist in a generalized function sense. It is not to be confused with the 
principal value of integral (3.16b), which does not verify causality. It is on the other 
hand equivalent to the Bromwich contour integral for Laplace transforms (cf. 
Appendix D). 

4. Plane internal waves 
Numerous writers have investigated the properties of Boussinesq (e.g. Lighthill 

1978, $54.1 and 4.4; Brekhovskikh & Goncharov 1985, 5 10.4) and non-Boussinesq 
(e.g. Tolstoy 1973, $2.4; Liu & Yeh 1971) plane internal waves and have analysed, 
via the group velocity theory, the generation of internal waves by point sources. We 
summarize here their conclusions, for the interpretation of forthcoming results. 

4.1. Boussinesq case 

The dispersion relation for plane monochromatic Boussinesq internal waves (k is the 
wavevector, k, its horizontal projection, and k and k, their moduli), 

implies a frequency w < N ,  an arbitrary wavelength A and an inclination of the planes 
of constant phase to the vertical of B0 = arccos ( w / N ) .  The phase velocity c6 with 
which these planes move and the group velocity cg with which energy propagates are 
perpendicular, according to 

w k  w Nk, N 
c+=zz k k  

with cc = = %- = -cos8,, 

Thus, energy propagates along the planes of constant phase. Conversely k satisfies 

By virtue of 
P c  

Po cg c, 
v = -  

(4.4) 

(4.5) 

fluid particles move along straight-line paths also parallel to the wavecrests. 
A monochromatic point source consequently radiates Boussinesq internal waves 

along directions inclined at  the angle 8, = arccos (w/N) to the vertical, on a ‘St 
Andrew’s Cross’ in two dimensions and a cone with vertical axis, hereafter called 
characteristic, in three dimensions (figure 1). Surfaces of constant phase are parallel 
to this cone. They move towards the level of the source, but disappear as soon as they 
have left the cone within which all the energy is confined. The motion of fluid 
particles is radial and also located on the cone. A confirmation of these features 
comes from the experiments of Mowbray & Rarity (1967), McLaren et al. (1973) and 
Kamachi & Honji (1988). Of particular importance are internal waves of near- 
buoyancy frequency. They are confined at the vertical from the source and do not 

15-2 
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z t  

FIGURE 1. Boussinesq internal waves radia ed by a monochromatic point source oscillating a > 
frequency w = LP. Waves are confined on the characteristic cone of semi-angle 8, = arccos ( w / N ) ,  
along which energy propagates with group velocity c,. Surfaces of constant phase are parallel to 
the cone, and move perpendicular to it with phase velocity c$. 

FIQURE 2. Boussinesq internal waves radiated by an impulsive point source. The conical surfaces 
of constant phase @ = Ntlcos81 = $+nn (n any integer), on which the pressure and velocity fields 
are zero. are shown for Nt = 1On. 
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2 k J B  

- 4  

FIGURE 3. Wavenumber surface for non-Boussinesq internal waves of frequency o = @'. The group 
velocity cg associated to a given wavevector k points along the normal to this surface, out of the 
characteristic cone of semi-angle 0, = arccos ( w / N ) .  

propagate, for their group velocity vanishes. They are instead vertical oscillations of 
fluid particles. This too is confirmed by the experiments of Gordon & Stevenson 
(1972). 

The Boussinesq internal waves generated by a point impulsive source propagate 
away from i t  at the group velocity cg = r / t ,  where r represents the position with 
respect to the source and t the time elapsed since the impulse. The frequency and 
wavevector in a direction inclined at an angle 0 to the upward vertical follow from 
(4.4) and (4.1), as 

w=Nlcosel and 
r r  

The surfaces of constant phase @ = ot - k- r = Ntlcos 01 are conical (figure 2) and move 
towards the level of the source at  the decreasing phase speed 

r 
t cB = -1cotan01, (4.7) 
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FIQURE 4. Group velocity cg and radial phase velocity c+ of non-Boussinesq internal waves 
generated by a monochromatic point source as a function of frequency o, in a direction making an 
angle 8 = 60" with the vertical. 

in agreement with experiments by Stevenson (1973). The wavelength 

27c 27c r A=-=- -  
k Nt sin0 

is constant on toroidal surfaces with vertical axes and radii NtAl2n. It decays with 
time, as the wavecrests multiply. Again, the motion of fluid particles is radial. 

4.2. Non-Boussinesq case 
Non-Boussinesq effects transform the dispersion relation into 

The wavenumber surface is no longer a cone but an hyperboloidal surface of 
revolution, with asymptotes making an angle @-0, with the vertical (figure 3). The 
group velocity points along its normal and is given by 

A@ & 

k Z  cg, = -w- 
k2+l$2' 

- -x  -xe ,  + N  k2 
cg = N (k2  ++/?')$ kh kz k (t ) ( k 2 + w ) i k h '  

N 2  - W 2  kh - or equivalently CBh - ~ ~ 

w k2+$/?" 

(4.10) 

(4.11) 
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It is no longer perpendicular to the wavevector. The trajectories of fluid particles 
become ellipses, studied by McLaren et al. (1973). 

A point monochromatic source consequently radiates non-Boussinesq internal 
waves into the whole region Icosel < w/N situated outside the characteristic cone. 
There, each point receives a wave whose group velocity is directed towards it and 
whose wavevector satisfies, according to (4.1 l ) ,  

w2 rh P ,sine-, 
r,, kh = 5 [ ( N 2  - w 2 )  (w2 - N2 cos2 e ) ] ~  

k =-- cos e. 

The associated phase is of the form 

CD = w t - k - r  = wt-- = ot - [ ( w )  r .  

( 4 . 1 2 ~ )  

(4.12b) 

(4.13) 

Waves are locally plane, with a radial wavenumber f l (w) ,  a radial phase velocity 
w / f l ( w ) ,  and a group velocity 

(4.14) 

which vanishes at the limits y c o s  81 and N of the internal wave spectrum and reaches 
a maximum cgo at the frequency (figure 4) 

lcos el + (3 + COS2 

wo = N[lcosOl 3 

5. Exact Green’s function 
5.1. Monochromatic Green’s function 

For w > N, rescaling the coordinates according to 

(4.15) 

reduces equation (3.15) for the monochromatic Green’s function G ( r , w )  to a 
Helmholtz-like equation, whose Green’s function is given for instance by Bleistein 
(1984, p. 177). Returning to the original coordinate system described in figure 5 
yields 

Pr w2 - N 2  C O S ~  O r ]  

G ( r , w )  = - (5.2) 4nr (w2 - ~ 2 ) t ( w 2  - ~2 cog2 el4 . 
1 exp [ -5 ( “2 -N2 

As implied by the Pierce-Hurley radiation condition, the analytic continuation of 
this result over the lower half of the complex w-plane provides the value of the 
Green’s function on the whole real w-axis. The branch cuts emanating from the 
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FIGURE 5. Coordinate system for internal wave radiation. 

FIGURE 6. Branch cuts for the monochromatic Green’s function, and integration path for the 
impulsive Green’s function. 

branch points fN, f q c o s  01 are taken as extending vertically upwards, as shown in 
figure 6. Thus, the phase of complex square roots of the form (w2-w$  has the 
following behaviour on the real axis : 

ph (w2-w$ = 0 (W > w,,), (5.3a) 

= -in (14 < w o ) ,  (5 .3b)  

- - - 7 t  ( W < - W , ) .  (5.3c) 

Denoting from now on complex square roots, defined by (5.3), as powers 3 in curly 



Internal wave generation in uniformly stratified Jluids. Part 1 45 1 

brackets and real square roots as powers t in square brackets, we obtain for the 
Green’s function a t  every real frequency 

(5.4a) 

(5.4b) 

In  accordance with the group velocity theory, internal waves propagate for 
frequencies qcos8I < IwI < N and possess there the phase (4.13). Outside this 
frequency band they are evanescent. Under the Boussinesq approximation their 
wavy character disappears, apart from a phase jump of in on the characteristic cone 
lcos8l = Iwl/N, where the Green’s function diverges. Although this phenomenon is 
consistent with the confinement of Boussinesq internal waves on the characteristic 
cone, it also shows the inadequacy of the Green’s function to represent them there. 

The preceding method was introduced by Pierce (1963), later rederived by Hurley 
(1972) and recently developed by Appleby & Crighton (1986, 1987). ‘Classical’ 
investigations of the monochromatic Green’s function of internal waves involve, 
however, a somewhat different Fourier analysis in the space domain. G ( k ,  w ) ,  defined 
by 

G ( r , t )  = - fdw 1d3k G ( k ,  w )  ei(wt-k.r), (5.5) 
(27c)4 

readily follows from (3.15) as 

1 
W 2 ( k 2  +$’) -N2kk ‘ 

G ( k , w )  = 

but remains indeterminate for frequencies and wavenumbers related by the 
dispersion relation (4.9). The radiation condition makes i t  determinate, by imposing 
that 

1 
G ( k , w )  = lim 

E+O+ (w - ia)2(k2 + ip”) - N2ki’ 
(5.7a) 

+ i n 8 [ ~ ~ ( k ~ + i / 3 ~ ) - N ~ k g ] s g n w .  (5.7b) 
1 - - 

PV w2( k2 + $?2) - N2k; 

The principal value of the singular generalized function (5.6) is consequently added 
to a combination of free waves represented by the Dirac delta, so as to eliminate any 
wave which does not originate at the source. 

G ( k , w )  is first inverted along one space direction by the joint use of the residue 
theorem and the radiation condition. The passage to (5.4) reduces then to the 
evaluation of Sonine4egenbauer integrals, most of which are given by Watson 
(1966, Q 13.47), while others have been especially calculated for the purpose of this 
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study. Further detail about this procedure may be found in Voisin (1991). We just 
deal here with some intermediate results, i.e. G(rh,  k,, w ) ,  G ( k h ,  z, w )  and G(k,,  y, z,  w ) ,  
of special interest for some problems of internal wave generation, such as moving 
point sources. 

Pierce’s (1963) procedure enables their rapid derivation, in the following way : 
changes of coordinates analogous to  (5.1) reduce the equations which define them to 
one- or two-dimensional Helmholtz-like equations, whose Green’s functions have 
been given by Bleistein (1984, p. 177). In the original coordinate system we obtain 

Most calculations of the monochromatic Green’s function found in the literature 
are based upon the ‘classical ’ method, in both Boussinesq and non-Boussinesq cases. 
Ramachandra Rao (1973, 1975), Grigor’ev & Dokuchaev (1970) and Gorodtsov & 
Teodorovich (1983) derived G(rh,  k,, w )  in this way. G(kh, z,  w )  has been considered by 
Sarma & Naidu (1972a, b) ,  Ramachandra Rao (1973), Tolstoy (1973, §7.3), Rehm & 
Radt (1975), and also Miles (1971) and Sturova (1980). Gorodtsov & Teodorovich 
(1980) eventually dealt with G(k,, y, z,  w ) .  I n  fact, these investigations are often 
devoted to the pressure and displacement fields generated by point mass and force 
sources rather than the Green’s function defined in (3.15). These fields readily follow 
from the Green’s function, the corresponding calculations being performed in 
Appendix A. The systematic comparison undertaken there shows published results 
to coincide with ours, except those of Sarma & Naidu (1972a, b ) ,  Tolstoy (1973, $7.3) 
and Ramachandra Rao (1975). 

The explanation for these discrepancies lies entirely in the radiation condition. 
Sarma & Naidu (1972a, b )  do not remove the exponential density factor (3.9) from 
the pressure before applying Fourier analysis. Thus, they consider the Fourier 
transform of a function which does not possess any such transform, even as a 
generalized function. No radiation condition is needed, but the pressure they obtain 
is physically unacceptable. Ramachandra Rao (1975) restores the extraction of the 
density factor, but his application of Sommerfeld’s radiation condition seems 
erroneous and accordingly the pressure he derives for a force‘source is not consistent 
with his previous result for a mass source (Ramachandra Rao 1973). Similarly, the 
difference between Tolstoy’s (1973, 57.3) displacement and ours is caused by an 
invalid use of Lighthill’s radiation condition, which Tolstoy understands as an 
attenuation of the radiated waves with time. 

5.2. Impulsive Green’s function 
To calculate the impulsive Green’s function Sekerzh-Zen’kovich (1979, 1981) 
introduced a direct procedure, based upon 

H ( t )  ,sin ~t kh ] [ ( k 2 + i b 2 ) i  ’ 
G ( k ,  t )  = - 

Nkh( k2 + i p ” ) 3  
(5.11) 
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which follows from the application of residue theorem to (5.6). H ( t )  denotes the 
Heaviside step ( H ( t )  = 1 for t > 0, 0 for t < 0). When the Boussinesq approximation 
is made, Fourier inverting (5.11) in space yields an integral expression of the Green’s 
function, rewritten by Teodorovich & Gorodtsov (1980) as the spectral decomposition 

sin wt 
GB(r, t )  = -- ,do. 

[ (N2  - u2) (w2 - N 2  C O S ~  B)]z  
(5.12) 

Hereafter a subscript B will denote a Boussinesq result. Thus, impulsive internal 
waves can be expressed as the superposition only of propagating monochromatic 
waves. 

Clearly, a procedure relating more explicitly the monochromatic Green’s function 
to the impulsive one, and holding for non-Boussinesq as well as Boussinesq internal 
waves, is needed. It begins by Fourier inverting (5.2) in time, so that (the integration 
contour is sketched in figure 6 and lies below the singularities of the integrand) 

(5.13) 
w2 - N 2  

Then, separating by (5.4) the contributions of propagating and evanescent waves, we 
find 

N2-w2 

dw. (5.14) 

Closing for t < 0 the integration contour of (5.13) by an infinite semicircle in the 
lower half-plane where G(r, w )  is analytic, and applying Jordan’s lemma, we recover 
the causality of the Green’s function : G ( r ,  t )  = 0 for t < 0. Separating its odd and 
even parts with respect to time, we have 

G(r7 t )  = 2H(t)  Godd(r? t )  = 2H(t)  Geven(r, t ) ,  (5.15) 

and (5.14) accordingly becomes 

Evanescent waves consequently merge with propagating waves and transform them 
into the standing waves appearing in (5.16). Under the Boussinesq approximation, 
the relative contributions of propagating and evanescent waves are even equal, but 
it must be remembered that their propagating or evanescent character is lost in that 
case. 

Closing now for t > 0 the integration contour of (5.13) in the upper half-plane 
transforms the Green’s function into the sum of four integrals along the branch cuts 
emanating from _+N, _+qcosB) (cf. figure 6). Impulsive internal waves are thus made 
up of the combination of gravity waves, that is plane propagating waves of frequency 
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N]cosOl, and buoyancy oscillations, which are oscillations of the fluid at  frequency N 
(these names date back to Dickinson 1969). I n  $4.1 group velocity allowed a first 
examination of the properties of both components. Unfortunately neither these 
properties, nor the way that gravity waves and buoyancy oscillations are combined 
to form the internal wave field, are exhibited by the spectral integral (5.16). Thus 
alternative procedures, of either exact or asymptotic nature, must be developed for 
the calculation of the impulsive Green’s function. This is performed in $6. 

6. Asymptotic Green’s function 

Under the Boussinesq approximation, the monochromatic Green’s function 

6.1. Boussinesq Green’s function 

is made up of the product of two functions whose inverse Fourier transforms are 
Bessel functions (see (D 6) in Appendix D). Then convolution theorem implies that 

G B ( f ,  t )  = -- Jo(N.rlcos 01) Jo[N(t -7)] d ~ ,  

a time decomposition of the impulsive Green’s function showing how gravity waves 
and buoyancy oscillations interact to produce the overall internal wave pattern. At 
the vertical from the source and at its level only the latter ones are encountered, 
according to 

sin Nt 
GBlrh-O = m’ 

which follow from the app--:ation of (D 5) and (D 6) (Appendix D) to (6.1). ,.istead 
of being confined a t  the vertical from the source, buoyancy oscillations are 
consequently distributed over the whole of space, in contradiction with the 
predictions of the group velocity theory. 

To gain a better physical insight into the separation of internal waves into gravity 
waves and buoyancy oscillations, we must resort to asymptotic procedures, deduced 
from general theorems about Fourier transforms. The small-time expansion of GB(r,  t )  
is obtained by term-by-term inversion of the high-frequency expansion of GB(r ,  w )  
(Morse & Feshbach 1953, p. 462). Similarly a large-time expansion of G B ( r , t )  is 
derived by adding up the contributions of the singularities k N ,  fflcos 01 of GB(r,  w )  
(Lighthill 1958, $4.3). Such an analysis was first applied to the Green’s function of 
internal waves by Dickinson (1969), in the context of Laplace transforms. 

For small times Nt -4 1, expanding G B ( r , w )  in an inverse power series of w and 
allowing for (D 2), we obtain 

where 
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The series (6.5) converges for all finite t ,  so constituting an exact representation of the 
impulsive Green's function rather than a mere expansion. To leading order, 

In agreement with Batchelor's (1967, $6.10) general discussion, and Morgan's (1953) 
discussion of the analogous case of unstratified rotating fluids, the Boussinesq fluid 
initially ignores its stratification. Thus its motion, described by (6.7), is irrotational. 
Further details about the question of initial conditions for stratified or rotating 
fluids, which has been a controversial subject for several years, are given in Appendix 
B. 

For large times Nt 9 1, gravity waves and buoyancy oscillations have become 
separated. They respectively correspond to the contributions of the pairs of branch 
points fillcos81 and + N .  Gravity waves are, from the expansion of GB(r,w) in 
powers of (w-N]cosOJ}i near Nlcos81 and its Fourier inversion by (D 3), 

The conjugate contribution of -N]cosel has been incorporated by taking two times 
the real part of the result. We similarly have for buoyancy oscillations 

with 

To better exhibit the angular dependence of the coefficients p, and y n  it may be 
preferred to express them in terms of generating functions, in which case 

where 

(6.12) 

(6.13) 

(6.14) 

Of crucial importance is the leading-order term of the large-time expansion, 

which extends Lighthill's (1978) equations (255)-(258) to the Green's function of 
internal waves, by simultaneously including gravity waves and buoyancy oscil- 
lations. Gravity waves are verified to have the phase expected from the 
consideration of group velocity. Buoyancy oscillations are confirmed not to 
propagate, but also to be present everywhere. For the moment we just note these 
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points, and postpone the full interpretation of (6.15) until 57.2. Another asymptotic 
expansion of the Green’s function, alternative to (6.15), may also be derived; this is 
the matter of Appendix C. 

When the vertical line passing through the source (0 = 0 or x) or the horizontal 
plane containing it (0 = $x) are approached, (6.15) is invalidated. Near to the 
vertical, gravity waves and buoyancy oscillations may no longer be separated and 
combine to form the persistent oscillation accounted for by (6.3). Near to the 
horizontal, (6.4) shows gravity waves, whose frequency tends towards zero, to 
vanish. Only buoyancy oscillations remain, still described by the corresponding 
terms of (6.15). A more precise study of the range of validity of large-time expansions 
of internal waves has been achieved by Zavol’skii & Zaitsev (1984). I ts  consideration 
is, again, postponed until $7.2. 

6.2. Non-Boussinesq Green’s function 

Non-Boussinesq effects induce in the phase of the impulsive Green’s function (5.13) 
an additional dependence upon position r and frequency w which significantly alters 
the way that its asymptotic expansions arc obtained. First, the calculation of a 
general form for all terms is excluded and we shall only consider leading-order terms. 

For small times Nt < 1,  the procedure of 56.1 remains applicable and yields 

(6.16) 

Surprisingly, non-Boussinesq effects cause an isotropic exponential decrease of the 
perturbation with distance from the source, to be added to the anisotropic exponential 
variation (3.9). When r is small compared with the scale height 2/p of the 
stratification the Boussinesq result (6.7) is recovered and the initial motion is 
irrotational again. 

For large times Nt % 1,  two distinct types of expansions must be separated, 
depending on whether r is allowed to become large with t or not: (i)  t --f co with r / t  
fixed, (ii) t + co with r fixed. They correspond to different regions of space and time 
which, as Bretherton (1967) pointed out in a similar case, ‘merge into one another, 
in those places where the respective asymptotic expansions have common areas of 
validity’. Expansion (i) describes a given wavepacket moving a t  the group velocity 
cg = r / t ,  so as to  maintain its frequency and wavenumber constant. At a given point 
expansion (i)  is first valid, and the successive arrivals of wavepackets of decreasing 
group velocity are observed; then, as c g + O  and t / r +  co, expansion (ii) becomes 
relevant. Conversely a t  a given (but still large) time, region (ii) is composed of points 
situated a t  finite distances from the source, while region (i) lies outside it. 

For Nt % 1 and a fixed r / t ,  the impulsive Green’s function (5.13) may be evaluated 
by a graphical procedure, developed by Felsen (1969) and applied by Liu & Yeh 
(1971) to acoustic-gravity waves. This procedure is based upon the method of 
stationary phase (e.g. Bleistein 1984, $2.7). The phase 

@(u) = ut+i- = ot - c ( w )  r (6.17) 

of the integrand is stationary for the frequency us, with which is associated a 
wavepacket of radial wavenumber t (w , )  and group velocity cg(ws),  verifying 

t 1 
@‘(us) = 0 or - = C(w, )  = - 

r cg(ws).  
(6.18) 
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FIGURE 7. Graphical determination of the frequencies wS1 of gravity waves and wS2 of buoyancy 
oscillations, for propagation from a point source along a direction inclined at 0 = 60" to the 
vertical. 

The dominant contributions to the integral are assumed to arise from the frequency 
band Itlcosel < Iwl < N of propagating internal waves, the group velocity of which 
(4.14) has already been plotted in figure 4 versus frequency. Intersecting a similar 
plot of the inverse group velocity in figure 7 with horizontal lines of heights t / r  
provides, according to (6.18), a qualitative description of the internal waves received 
at a fixed point versus time. 

Thus, a t  time 

(6.19) 

the first internal waves of frequency wo given by (4.15) and maximum group velocity 
cgo = r/to reach the point under consideration. The structure of the associated 
wavefront was investigated by Kato (1966b) and Cole & Greifinger (1969) for 
acoustic-gravity waves, Mowbray & Rarity (1967) and Tolstoy (1973, 57.3) for non- 
Boussinesq internal waves. It is in fact a caustic : internal waves gradually build up 
just prior to its arrival, and subsequently separate into two components of 
frequencies wS1 and ws2 such that q c o s  81 < wS1 < wo and wo < wS2 < N .  When t / r  + co, 
wS1 and wS2 respectively tend towards qcos  el and N ,  identifying the corresponding 
components as gravity waves and buoyancy oscillations. Ultimately, the Boussinesq 
situation is recovered. 

Not only this qualitative insight into the propagation of internal waves, but also 
the related quantitative analysis, are provided by Felsen's (1969) method. 
Accordingly, the build-up of internal waves prior to the arrival of the caustic, and 
their subsequent decomposition into gravity waves and buoyancy oscillations, are 
accounted for by an Airy function ; the following evolution of both components is 
described by the standard stationary-phase formula. Unfortunately, these results 
rely on the graphical determination of the stationary frequencies wsl and ws2 and 
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cannot be written in explicit form, except in the final stage t / r  + 00, when analytical 
expressions are available for wS1 and wSz.  

We now focus attention on that stage, when region (ii) is entered: Nt 9 1 and /3r 
is held fixed. To avoid the neglect of evanescent internal waves, we make no further 
use of Felsen’s approach and rather remark that, in region (ii), expanding the 
impulsive Green’s function is again expanding an inverse Fourier transform for large 
times. Thus, Lighthill’s (1958) asymptotic method is relevant again. Gravity waves 
and buoyancy oscillations arise as, respectively, the contributions of the pairs of 
branch points fqcosel  and fN of the monochromatic Green’s function (5.2). 
Gravity waves are, from the expansion of G ( r , o )  in terms of (w-flcos81); and its 
inversion by (D 8), 

Similarly buoyancy oscillations are reducible to the inverse transform (U 9), of which 
(D 15) provides an asymptotic expansion, so that 

As in the Boussinesq case an alternative expression of gravity waves may be 
proposed; its derivation is outlined in Appendix C. 

Buoyancy oscillations are now waves, to which non-Boussinesq effects have given 
some propagation. Contrary to gravity waves, they comprise both propagating and 
evanescent internal waves. However, as long as the Boussinesq approximation is not 
made, evanescent waves decay exponentially with time and stay negligible. In $7.3 
we shall carry the interpretation of gravity and buoyancy waves further, by 
calculating their characteristics (frequencies and wavevectors). 

Ultimately both waves become Boussinesq, as 

$/3r + NtsinB (6.22) 

for the former, and ;/3rh << Nt (6.23) 
for the latter. Instead of the ‘classical’ near-field argument $/3plxl + 1 (Hendershott 
1969), two surfaces, respectively toroidal and cylindrical, define the validity of the 
Boussinesq approximation for gravity and buoyancy waves. They expand along the 
horizontal at velocity Uv/p and are represented in figure 8. Their existence simply 
reflects the complex structure of time-dependent internal wave fields ; the significance 
of (6.22) and (6.23) remains, in agreement with Lighthill (1978, §4.2), small 
wavelengths h 4 2//3. 

For buoyancy waves the Boussinesq approximation is moreover non-uniform. As 
(6.23) becomes valid evanescent waves become comparable with propagating waves 
until in the end, when non-Boussinesq terms vanish in (6.21), both contributions are 
the same. Then the buoyancy oscillations appearing in (6.15) are recovered, but 
multiplied by 2 / 4 3 .  Such a non-uniformity is not surprising, since making both 
/3-+ 0 and w + N in (5.2) is clearly contradictory. Again we postpone the interpretation 
of this phenomenon until $7.3 and just note, as regards its mat,hematical significance, 
that  it is due to the coalescence of two saddle points with a branch point of both the 
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FIGURE 8. Regions for the validity of the Boussinesq approximation, for gravity (a torus of radius 
, Boussinesq zone for gravity d buoyancy (a cylinder with the same radius) waves. 

, Boussinesq zone for buoyancy oscillations. 

argument of the exponent and the amplitude (cf. Appendix D). The uniform 
asymptotic expansions of Bleistein & Handelsman (1986, ch. 9) do not seem to apply 
to this case. 

7. Internal wave field of a point mass source 
As the internal potential generated by a point mass source, the Green’s function 

has no direct physical significance and its interpretation requires the consideration 
of the associated pressure and velocity fields. In the present section, for an impulsive 
source m(r, t )  = m, 6(r)  &(t)  releasing a volume m, of fluid, we deduce these fields from 
the Green’s function, by multiplying it by m, and differentiating it according to 
(3.11)-(3.12). There may, however, be instances where the Green’s function has a 
meaning in itself, such as the Cauchy problem for internal waves (Sekerzh- 
Zen’kovich 1982) ; see Appendix B. 

7.1. Monochromatic waves 
Continuing the approach of $5, we first deal with a monochromatic source, and 
replace in (3.11)-(3.12) a/at by iw. Then, the differentiation of G(r,w) yields 

/3r w2 - N2 cos2 8 I r /3r w2 - N 2  cos2 I3 ’{[’+?{ 02-N2 }I;+? ~2-N2  ez} . (7.2) 
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Non-Boussinesq effects add a vertical component to the radial motion of the fluid. In 
the frequency range Ycos 01 < IwI < N of propagating internal waves the radial and 
vertical velocities are out of phase, for the term in square brackets in (7.2) is complex. 
Thus, the trajectories of fluid particles are elliptical, in agreement with the group 
velocity theory. 

Under the Boussinesq approximation the pressure and velocity fields become 

(7.3) 

(7.4) 

Consistently with the neglect of density variations poo has been replaced by po in 
(7.3). Fluid particles move as expected along radial trajectories. Out of the 
characteristic cone the pressure and velocity are in out of phase, implying that no 
energy flux, proportional to Re[Pu*] where * denotes a complex conjugate (see 
Lighthill 1978, §4.2), is radiated. Energy, and thus internal waves, are confined on 
the cone, where they diverge. There, point sources are no longer an adequate model 
of real sources of internal waves. Only the consideration of the finite extent of the 
latter will account for the radial decrease as l/&, and the transverse phase variations, 
experimentally exhibited by McLaren et al. (1973). 

7.2. Boussinesq impulsive waves 
Passing to impulsive internal waves we commence as in $6.1 by studying the 
Boussinesq pressure and velocity fields. For small times Nt 4 1, either differentiating 
(6.7) according to (3.11)-(3.12) or asymptotically inverting (7.3)-(7.4) by (D l ) ,  we 
obtain 

mo r 
4nr2 r uB(r, t )  - --a@). 

The pressure and velocity impulses necessary to set the fluid into motion are 
recovered (cf. Appendix B). 

In similarly differentiating the expansion of the Green's function for large times 
Nt 9 1, care must be taken to retain the first two orders of (6.8) and (6.10) so as to 
recover the presence of buoyancy oscillations. Lighthill's (1958) method may also be 
applied to (7.3)-(7.4), in which cases it involves (D 3)-(D 4). Both procedures yield 

sin (Ntlcos 01 -in) 1 sin (Nt - in) 
(Ntlcos 01); sine ( ~ t ) ;  

PB(r, t )  - - H ( t )  -- 

(7.8) 

The phase Qi, = Ntlcos 01 -in of gravity waves is, apart from a phase lag of in, 
identical to that deduced from the consideration of group velocity. Thus, gravity 
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waves propagate as the locally plane waves described in $4.1, with the group velocity 
cg = r / t  and the frequency and wavevector 

r r  
(7.10) 

The pressure and velocity oscillate in phase and verify, consistently with (4.5), 

(7.11) 

Note, however, that the velocity grows with time as ti and ultimately diverges 
(Zavol'skii & Zaitsev 1984), the pressure simultaneously decreasing as 1 / 8  so as to 
maintain the radiated energy flux finite. Meanwhile, the wavelength A, given by (4.8) 
decays as l/t and may eventually become smaller than intermolecular distances 
(Sobolev 1965, p. 203), vitiating the continuous medium model. Clearly, a cutoff 
eliminating the ultimate dominance of the smaller wavelengths is needed (Lighthill 
1978, p. 359). As above, the consideration of the finite dimensions of real sources will 
provide it. 

The phase Gb = Nt-in of buoyancy oscillations confirms that they do not 
propagate, whereas their amplitude shows them to be present everywhere and to 
induce a radial motion of fluid particles, in contrast to the predictions of the 
Boussinesq group velocity theory. This testifies to their non-Boussinesq origin. The 
pressure and velocity are in out of phase, implying a zero enerfy flux. Compared with 
gravity waves, buoyancy oscillations decrease with time as t-a and remain negligible. 
This is contradictory to the ultimate dominance of oscillations of the fluid a t  the 
buoyancy frequency, experimentally found by McLaren et al. (1973) for transient 
internal waves. The explanation for this phenomenon lies, again, in the finite size of 
real sources. 

Exact integral expressions of the pressure and velocity fields follow from the same 
method that has been used to derive the spectral decompositions (5.12) and (5.16) of 
the Green's function. Amendments are nevertheless required, since (7.4) is not 
integrable at  the singularities f y c o s  81. A method to circumvent this difficulty, 
which turns out to be equivalent to that proposed by Zavol'skii & Zaitsev (1984), 
may be found in Voisin (1991). It yields for the pressure 

and for the displacement vector cg, related by vB = acB/at to the velocity, 

Zavol'skii & Zaitsev (1984) compared the numerical calculation of (7.13) with the 
gravity wave part of its large-time expansion, readily derived from (7.8). They 
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concluded that, very early, the asymptotic result is valid, from the level of the source 
to the conical nodal surface lying closest to  the vertical, that is in a region of space 
which becomes larger and larger as time elapses. After one buoyancy period 
(Nt/2x = 1) for instance, (7.8) induces an error smaller than 5% for every point 
verifying 40" c 8 c 140". At the same time buoyancy oscillations are confirmed to be 
negligible in that zone. 

7.3. Non-Boussinesq impulsive waves 

Investigating now the influence of non-Boussinesq effects on impulsive internal 
waves, we just consider the large-time pressure field. Either differentiating 
(6.20)-(6.21) according to (3.12) or applying Lighthill's (1958) method to (7.1), in 
which case (D 8) and (D 15) are involved, we obtain for gravity and buoyancy waves, 
respectively , 

In  the latter, evanescent waves, which either are negligible compared with 
propagating waves in the non-Boussinesq case, or equal to them when the Boussinesq 
situation is reached, have been omitted. 

From the phases of gravity and buoyancy waves we deduce their frequencies and 
wavevectors by differentiation (cf. (7.9)-(7.10)), as 

and 

wg = qcos  01 [ 1 + f ( 2N$n 8)1] 9 (7.16) 

( 7 . 1 7 ~ )  

(7.17b) 

(7.18) 

(7.19) 

In  both cases (4.12) still relates w and k .  
As expected non-Boussinesq effects involve the small parameters (pr) / (Wt sin 8)  

and (prh)/(2Nt) ,  and give to buoyancy oscillations a horizontal propagation. To 
leading order the wavelength of gravity waves reduces to (4.8) and is constant on 
tori, whereas the wavelength of buoyancy waves, 

(7.20) 

is constant on cylinders. Thus, non-Boussinesq transient internal wave fields are 
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ruled by two surfaces, a torus and a cylinder, represented in figure 8. On them the 
wavelengths of gravity and buoyancy waves are comparable with the scale height 
2 / p  of the stratification ; well inside them h < 2 / p  and the Boussinesq situation is 
recovered. 

As long as gravity and buoyancy waves remain fully non-Boussinesq, that is near 
to the cylinder, (prh)/(2Nt)  is finite and both waves are O((Nt)-;). As the cylinder is 
entered the nature of buoyancy waves changes until eventually, when (6.23) is 
verified, they become Boussinesq buoyancy oscillations. Then, although their 
wavelength is zero and their wavenumber infinite (as implied by the second form of 
kb), the spatial variations of their phase are negligible compared with its time 
variations (as implied by the first form of kb). Meanwhile, the leading-order term in 
their pressure vanishes so that they are now O((Nt)-t) .  Thus, buoyancy waves have 
simultaneously ‘ lost ’ their propagation and become insignificant compared with 
gravity waves. 

No attempt has been made to calculate the non-Boussinesq @(A?)-:) term in (7.15), 
but i t  is anticipated that for it the Boussinesq approximation should be uniform and 
that (7.7) should be recovered as (,9rh)/(2Nt) + O .  This should provide a physical 
explanation for the non-uniformity of the Boussinesq approximation for buoyancy 
waves. 

8. Internal wave radiation by a pulsating sphere 
As the simplest example of a source of internal waves with finite dimensions we 

consider in this section a sphere of radius a ,  on which surface the normal velocity U(t)  
is imposed. Particular attention will be paid to the far-field modelling of the sphere 
by the equivalent point mass source, a monopole of strength 47ca2U(t) (cf. P’ ierce 
1981, ss4.1 and 4.3) .  From the preceding section, non-Boussinesq effects upon 
internal wave generation appear to be satisfactorily accounted for by the 
consideration of point sources. Accordingly, our investigations will be restricted to 
the Boussinesq case. 

Although Hendershott (1969) has already treated both monochromatic and 
transient Boussinesq pulsations of a sphere, his results are invalidated by the error 
mentioned in Appendix C. Appleby &, Crighton (1987) also dealt with monochromatic 
internal waves, and Grimshaw (1969) with transient internal waves, generated by a 
sphere undergoing monopolar or dipolar motion. The present work is complementary 
to theirs, in that the link between point and extended sources is investigated. 

8.1. Exact solution 
Under the Boussinesq approximation the internal wave equation (3.10), and the 
condition of fixed radial velocity at the surface of the sphere, become (subscripts B 
will from now on be omitted) 

( s V z + N 2 V i ) $ ( r , t )  a 2  = 0 ,  

We solve them by the method we used to calculate the Green’s function ; then we 
deduce the pressure and velocity fields from the internal potential, by differentiating 
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FIGURE 9. Points of contact T+ and T- of the uppermost and lowermost tangents 
from a point r to the sphere. 

it according to the Boussinesq versions of (3.11)-(3.12). Thus we consider first 
monochromatic waves, described by 

and apply Pierce’s (1963) procedure to them. 
For o > N,  the change of coordinates (5.1) transforms (8.3) into Laplace’s equation 

and applies (8.4) at the surface of an oblate spheroid, suggesting the introduction of 
the appropriate spheroidal coordinates (Morse & Feshbach 1953, p. 662). Stretched 
oblate spheroidal coordinates, defined by 

(8.5b) 

result from the combination of the two transformations. By introducing the 
frequencies Z+ and Z- of internal waves emanating from the points of contact T+ and 
T- of the uppermost and lowermost tangents through the point r to the sphere (figure 
9), according to 
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the definition of E and 7 is inverted into 

The upper sign is associated to and the lower one to 7 ; E is made one-valued by 
requiring it to be positive as w +. co. In terms of f [  and 17 we have the differentiation 
rules 

( 8 . 8 ~ )  

Then the original system of equations (8.3)-( 8.4) becomes 

(8.10) 

As indicated by (%lo), internal waves do not depend on the 'angular' coordinate 
7;1 because of the monopolar type of motion of the sphere. The internal potential is 
given by 

aU(w) 6-i $(r ,w)  = i ln-. 
2N{02-N2};  ( + I  

(8.11) 

From its differentiation, and the use of (8.8), the pressure and velocity fields follow 
as 

(8.12) 

(8.13) 

(8.14) 

Causality extends these results along the whole real w-axis, by (5.3). Thus, 6 becomes 
a complex coordinate. Once U(w)  has been replaced by its value, Fourier inverting 
(8.11)-(8.14) finally provides the internal waves generated by any pulsation U(t) of 
the sphere. 

In dealing with monochromatic and impulsive pulsations, in what follows we shall 
consider internal waves at  large distances r 9 a from the sphere. There Ek approach 
the frequency N(cos8( of the waves emanating from the origin, according to 

C, - A+os 8) TNasin r Bsgn Z, (8.15) 
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rh 

\ 

FI~URE 10. Boussinesq internal wave field of a monochromatically pulsating sphere. Waves are 
confined in regions I11 and V, bounded by characteristic cones of semi-angle 8, = arccos (o/N). 
There, coordinates u* describe transverse distances, with which the phase variates. 

and 161 B 1 for almost any frequency. The internal wave field simplifies into 

(8.16) 

(8.17) 

(8.18) 

The motion of fluid particles is radial as if, again, the waves emanated from the 
origin. 

8.2. Monochromatic far jield 

The sphere is supposed to pulsate monochromatically, at the frequency 0 < w < N .  
If U(t)  = UOeiWt, and the time dependence eiWt is omitted in all variables, the internal 
wave field is given by (8.16)-(8.18) with U ( w )  replaced by U,. According to the 
different values of the now complex coordinate E the space must be divided into six 
regions (figure lo), separated by the characteristic cones, of vertical axis and semi- 
angle 0, = arccos ( w / N ) ,  tangent to the sphere (Hendershott 1969; Appleby & 
Crighton 1987). 

is either real or imaginary, the phase of internal waves 
does not vary and no energy is radiated. More precisely E reduces in the far field 
r B a t o  

- (8.19) 

In regions 11, IV and VI 

( ~ 2  - ~2 C O S ~  s}: r 
N a’ E -  
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so that (8.20) 

The pressure and velocity are similarly given by (7.3)-(7.4), with m, replaced by 
4na2U0. Regions 11, IV and VI are those where the point source model is valid; in 
agreement with $7.1 they also are those where no internal waves are found. 

On the other hand, in regions I11 and V 5 is complex, implying phase variation and 
energy radiation. Since Icosel + w / N  as r /a+ CQ, (8.19) is invalidated. It must be 
taken into account that transverse distances, represented by Hurley’s ( 1972) 
characteristic coordinates (cf. figure 10) 

w [ N 2 - w 2 ] i  
N ’’ uk = rsin(Bf8,) = N -rhT (8.21) 

remain finite and non-zero as the far field is approached. In region I11 for instance, 
as T >> a > lu+l, 

so that 

[N2-u2$ w w [N2-wz] i  
N N r+--(T+, z - - r -  N u+7 ‘h - N 

Then the internal wave field is given by 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

This expression makes Appleby’s & Crighton’s (1987) result for a pulsating sphere 
more explicit, and is similar to Lighthill’s (1978, $4.10) result for a distributed mass 
source. 

The phase @ = wt+iarccos (u+/a)  varies transversely, in agreement with the 
experiments of McLaren et al. (1973). From its differentiation with respect to u+ (cf. 
(7.10)) we deduce the transverse wavelength A = 47c(a2-r$)i, and the phase and 
group velocities 

(8.27) 

(8.28) 

which are zero at  the edges u+ = & a  of region I11 and maxima halfway between 
them. The definition of A is, however, of purely academic interest, since not even a 
single oscillation of the phase takes place between these edges. Only a continuous 
monotonic variation of in 0 is observed, which replaces the phase jump obtained 
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in $5.1 between regions I1 and IV. Interpreting it as a quarter of an oscillation we, 
rather, as did Appleby & Crighton (1987), introduce an effective wavelength 
‘ A ’  = 8a. 

The pressure and velocity oscillate in phase and verify, consistently with (4.5), 

(8.29) 

Their decrease as l/&, consistent with the conservation of energy for conical waves, 
coincides with the experiments of McLaren et al. (1973) again. The velocity 
singularity a t  the edges of region I11 remains integrable, and the energy flux 
consequently finite. 

8.3. Impulsive far jield 

We now consider an  impulsive pulsation U(t)  = U08(t)  of the sphere, for which 
U(w)  = U,, and investigate by the asymptotic method of $6.1 the radiated internal 
waves. For small times Nt -4 1,  from the high-frequency expansion of (8.16) 
( E  - ( w / N ) ( ~ / a ) )  and its Fourier inversion by (D 2),  we have 

a2 U, 
r 

@ ( r , t )  - - - H ( t ) - t  - 47ca2U0G(r,t). (8.30) 

Similarly the pressure and velocity are given by (7.5)-(7.6), with mo replaced by 
47ca2U0. As expected the initial motion is irrotational, and the point source model is 
then valid. 

For large times Nt 9 1, internal waves separate again into gravity waves (the 
contribution of the singularities & C,, Z-) and buoyancy oscillations (the 
contribution of the singularities f N ) .  For both of them, although for different 
reasons, the far-field assumption r % a contradicts the use of Lighthill’s (1958) 
method. Thus, we relax it at first. The procedure we shall use instead closely follows 
that of Bretherton (1967) and Grimshaw (1969). 

For gravity waves, as long as r/a remains finite, C+ and C- remain separated and 
Lighthill’s method still applies. After some algebra we find in the vicinity of C,, 
omitting a regular part which makes no contribution to the large-time expansion, 

(8.31) 

Inverting then (8.11) by (D 3) we finally obtain for rh > a 

and for Th c a with ( z  > 0, z < 0) 

1. (8.32b) 
cos8, (sin, cos)(C+t-$n) cos8- (cos,sin)(C-t-$) -~ 

(C+ t )$  lsin e-1; (C- t ) ;  
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FIQURE 11. Boussinesq internal wave field of an impulsively pulsating sphere. Out of the 
characteristic torus of radius Nta gravity waves, whose surfaces of constant phase are conical (cf. 
figure 2), dominate. Inside the torus they give way to buoyancy oscillations, whose phase is 
constant. 

Accordingly the gravity wave field results from the interference between the waves 
emanating from the points T+ and T- of the sphere. 

As the far field r % a is entered, the separation between T+ and T- vanishes in the 
amplitude of these waves but is still present in their phase ; there it reduces to the 
small but fundamental difference (8.15) between C+ and Z. Then ( 8 . 3 2 ~ )  becomes 

y9g(r,t) - -H( t )  , ( 8 . 3 3 ~ )  

- 47ca2U0 sin kgaG,(r, t ) .  
kga 

(8.33b) 

The interference between T+ and T- takes on the familiar form of a factor 
sin ( k ,a ) / ( kga) ,  with k, the wavevector (7.10), multiplying the gravity waves 
radiated by a point impulsive source releasing the volume 4na2U0. The same is true 
of the pressure and velocity, which vary as t-i and t-i, respectively, and remain finite 
at any t .  Where the sphere is small compared with the wavelength A, of gravity 
waves, as 

r / a  % Nt sin 6, (8.34) 

the interference is constructive and the point source is equivalent to the sphere. As 
for the Boussinesq approximation a torus, hereafter called characteristic, of vertical 
axis and radius Nta, defines the validity of the point source model for gravity waves. 

Note that the distinction between the two forms (8.32) and (8.33) of gravity waves 
cor?esponds to the separation of space into two regions similar to those encountered 
in $6.2: (i) Nt 9 1 with r / t  fixed, (ii) Nt % 1 with r /a  fixed (Bretherton 1967; 
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Grimshaw 1969). Equation (8.32) is relevant in region (ii), and (8.33) a t  the boundary 
between regions (i) and (ii). A particular feature of the pulsating sphere is that (8.33) 
remains valid across the whole of region ( i ) ;  see Voisin (1991). 

For buoyancy oscillations f; vanishes in the vicinity of N for rh < a ,  according to 

( 8 . 3 5 ~ )  

(8.35 b)  

There (8.16)-(8.18), which rely upon the fact that  151 9 1, no longer describe the far 
field. Thus we directly apply Lighthill's method to (8.11)-(8.14), use (D 3)-(D 4), 
and find 

a sin (Nt-an) 
+b(r,t) - - ~ ( t )  - '%arcsin - (3' N ( r j  (Nt); 

(3 N (Nt); 

aU sin (Nt - an) - - H ( t )  - 2 

sin (Nt -an) 
(Nt); 

(rh > a ) ,  ( 8 . 3 8 ~ )  

(rh < a ) ,  (8.36b) 

- 0  (vh < a) .  (8.38b) 

For rh < a the velocity field is made zero by the regularity of (8.13)-(8.14) near N .  For 
rh > a the two terms in square brackets in ( 8 . 3 8 ~ )  respectively denote its horizontal 
and vertical components. 

Inside the vertical cylinder circumscribing the sphere, buoyancy oscillations 
induce no motion of the fluid. On the cylinder the velocity diverges. Outside it the 
way that the finite extent of the sphere modifies buoyancy oscillations is different for 
(+h, Ph) on the one hand, and ub on the other hand. For +h for instance, 

r 
+b(r, t )  - 4na2U0-1!arcsin 

U 

In  both cases, however, very far from the cylinder, as 

rh 9 a ,  

(8.39) 

(8.40) 

the point impulsive source releasing a volume 4na2U0 is again equivalent to the 
sphere. Although this criterion is consistent with the cylindrical nature of the 
surfaces where the wavelength (7.20) of buoyancy oscillations is constant, the 
explanation for its exact form does not involve this wavelength; see Voisin (1991). 

The structure of impulsive internal waves, generated by the sphere, consequently 
evolves as follows (figure 1 l ) ,  in the far field r 9 a and for large times Nt % 1. At first, 
for a fixed observer, the sphere behaves like a point and the internal wave field is 
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dominated by gravity waves. The surfaces of constant phase are conical and the 
wavelength decreases as t-’ ; the pressure decays as t-i while the velocity grows as ti. 
Next the characteristic torus, which expands along the horizontal a t  the velocity Nu, 
reaches the point under consideration. The wavelength becomes comparable with the 
radius of the sphere, and gravity waves are ‘blurred ’ by the interference between the 
points T+ and T-. Now both pressure and velocity decay, as t-i and t-f respectively. 
So buoyancy oscillations, for which they vary as t-i, become of the same order as 
gravity waves. Further inside the torus interference turns out to  be destructive and 
gravity waves vanish. There only remain buoyancy oscillations, whose structure is 
ruled by the vertical cylinder circumscribing the sphere. Far from it, the point source 
model is valid again; near to i t ,  ‘interference’ of a special kind arises; inside i t ,  the 
fluid stays a t  rest. 

The experiments of Stevenson (1973) for an impulsive source and McLaren et al. 
(1973) for a transient source both confirm this discussion. The former exhibited the 
disappearance of gravity waves inside an expanding surface of roughly toroidal 
shape, and the latter showed the ultimate dominance of oscillations of the fluid at the 
buoyancy frequency. Similarly, an ultimate passage from gravity waves to buoyancy 
oscillations has been shown by the theoretical studies of Sekerzh-Zen’kovich ( 1982) 
and Chashechkin & Makarov (1984). 

9. Conclusion 
In  this paper a complete examination of the Green’s function of internal gravity 

waves has been attempted. For both monochromatic and impulsive waves, in both 
Boussinesq and non-Boussinesq cases, the Green’s function has been calculated. 
From it the pressure and velocity fields radiated by a point source have been 
deduced ; parallel to i t  the Boussinesq internal waves generated by a pulsating sphere 
have been derived. I n  so doing not only a first, mainly mathematical, aim has been 
achieved, namely to  synthesize and complement previous fragmentary and 
sometimes contradictory results about the Green’s function ; but also a second, 
mainly physical, aim has been reached, namely to analyse three interrelated 
principles which appear to rule the generation of internal waves : the dual structure 
of time-dependent internal wave fields, which combine gravity and buoyancy waves, 
the validity of the Boussinesq approximation, and the validity of the point source 
model. 

To deal with both the Green’s function and the pulsating sphere, the method we 
used is the same and applies to any problem of internal wave radiation. 
Monochromatic waves are considered first, by a complex coordinate transformation 
which reduces the internal wave equation to  a Helmholtz equation; causality makes 
the transformation determinate. Then impulsive waves are investigated in the small- 
and large-time limits, in which cases they follow from the expansions of 
monochromatic waves near high and singular frequencies, respectively, and their 
Fourier inversion with respect to  time. 

At a fixed frequency w < N ,  the Green’s function satisfactorily describes non- 
Boussinesq internal waves, propagating outside and evanescent inside the charac- 
teristic cone lcos81 = w / N ,  0 denoting the observation angle from the upward 
vertical. Under the Boussinesq approximation, on the other hand, the Green’s 
function is consistent with the confinement of the waves on this cone but fails to 
represent them there; thus, the point source model must be given up. Replacing it 
by a sphere gives the cone a width equal to the diameter of the sphere ; in this conical 
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Type of wave Acoustic Electromagnetic Gravity 

Small source a & A  a @ A  r % NtasinB 
+ outside the 

characteristic torus 

+ incompressible fluid +static fields +homogeneous fluid 

+ radiation of + radiation of + radiation of 
acoustic waves electromagnetic waves gravity waves 

TABLE 1.  Compared structures of classical wave fields and Boussinesq gravity wave fields. The 
characteristics of the latter are attributable to their wavelength A, = (27t/Nt) (rlsin 0) .  

Near zone a & r & A  a & r & A  Nt & 1 and r % a  

Far zone a - g A & r  a & A & r  Nt g 1 and r % NtasinB 

shell an explicit expression for the waves is found, which accounts for their l/ri radial 
decay, and their transverse phase variations. 

For large times Nt D 1 after an impulse, internal waves split into gravity and 
buoyancy waves ; the splitting follows the arrival of an Airy wave and is attributable 
to non-Boussinesq effects. As time elapses, the two components increasingly separate 
and ultimately lose, even if only superficially, their non-Boussinesq nature. 
Boussinesq gravity waves are plane propagating internal waves of frequency 

qcos  131, whose wavelength 2x r A =-- 
Nt sine 

is constant on tori. Boussinesq buoyancy waves are radial oscillations at frequency 
N, found everywhere in the fluid ; in fact they are propagating waves, of horizontal 
wavevector and wavelength 

A, = -(-) 4x prh 
P 2Nt 

constant on cylinders (rh denotes the horizontal distance from the source and 2/p the 
scale height of the stratification), whose propagation has vanished as they have 
become Boussinesq. 

For both gravity and buoyancy waves the Boussinesq approximation implies 
small wavelengths A 4 2/p. Thus it is valid, for the former when 

$r 4 Ntsin8, (9.3) 

and for the latter when $rh 6 Nt, (9.4) 

that is inside a torus of vertical axis and radius 2Nt/P, and inside the circumscribing 
cylinder, respectively (figure 8). As these regions are entered, buoyancy waves, 
initially comparable with gravity waves, simultaneously stop propagating and 
become less significant. 

There two separate criteria define, again, the validity of the point source model; 
for a spherical source of radius a 4 2 / p  they are 

r / a  b Nt sin 0 (9.5) 

for gravity waves, and rh b a (9.6) 

for buoyancy oscillations. Outside the torus of vertical axis and radius Nta, gravity 
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waves are dominant (figure 11); for them the sphere is compact, since a 4 A,. Inside 
this torus interference caused by the finite size of the sphere blurs gravity waves, and 
buoyancy oscillations are observed. For them the sphere is compact far from the 
vertical cylinder circumscribing it. Inside this cylinder the fluid is quiescent. 

Let us finally emphasize that, however different from the fields of acoustic or 
electromagnetic waves internal wave fields may be, their structure is governed by the 
same underlying principles, with the amendments required by the special form of the 
wavelengths (9.1) and (9.2) of their two components. To illustrate this fact table 1 
compares the different zones of a Boussinesq gravity wave field with those of acoustic 
and electromagnetic wave fields (cf. Jackson 1975, 99.1 and Pierce 1981, $4.7). 

This work is part of a Ph.D. thesis prepared a t  Universite' Pierre et Marie Curie and 
Thomson-Sintra ASM. It has been written during a one-year stay a t  the Institut de 
Me'canique de Grenoble, whose hospitality is acknowledged. The author would like to 
thank Professor Zarembowitch of UPMC, and Dr Tran Van Nhieu of Thomson- 
Sintra, for their guidance throughout his Ph.D. ; he is also indebted to Professors 
Crighton and Hopfinger for helpful discussions and kind encouragement given at 
decisive steps of the study. Financial support by the ANRT through Convention 
CIFRE No. 249/87 is acknowledged. 

Appendix A. Internal wave generation by point mass and force sources 
When a force source F per unit volume is added to the mass source considered in 
3.1, the horizontal motion of the fluid may become rotational. No internal potential 

exists any more, and a direct derivation of the equations verified by the physical 
variables v ,  P and p must be performed. In terms of the vertical displacement cz and 
the pressure P,  eliminating uh and p from (3.2)-(3.4), then removing the density 
factors (3.9), we obtain 

where 

From these equations, and the definition (3.14) of the Green's function G(r ,  t ) ,  the 
internal wave field generated by the point mass and force sources m(r, t )  = m, S(r) S(t )  
and F(r, t )  = F, S(r) S( t )  readily follows as 

(A5) 

For the point mass source P(r,  w )  has already been calculated in (7.1), while cz(r, w )  
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reduces to  -i/w times the vertical component of the velocity (7.2). Closely analogous 
are the pressure 

and the vertical displacement 

/3r w2 - N 2  C O S ~  e 
"2-N2 

(in the non-Boussinesq far field $r % 1 )  

generated by a vertical point force source. 
Sarma & Naidu (1972 a) ,  Ramachandra Rao (1973) and Grigor'ev & Dokuchaev 

(1970) considered the pressure field, and Rehm & Radt (1975) the Boussinesq vertical 
displacement, radiated by a monochromatic point mass source. Then Sarma & Naidu 
(1972b) and Ramachandra Rao (1975) obtained the pressure, and Tolstoy (1973, 
$ 7.3) the far-field non-Boussinesq vertical displacement, generated by a vertical 
point force source. Of all these calculations only those of Sarma & Naidu ( 1 9 7 2 ~ '  b ) ,  
Ramachandra Rao (1975) and Tolstoy (1973) disagree with ours, the discrepancies 
being extra factors -a if 101 > N and +; if IwI < N for Ramachandra Rao, -a for 
Tolstoy. The 1975 result of Ramachandra Rao is, moreover, not consistent with his 
1973 one, while the pressure of Sarma & Naidu never propagates. In  $5.1 an 
explanation for these differences is given. 

Appendix B. Initial conditions for Boussinesq internal waves 
According to the discussion by Batchelor (1967, $6.10) of impulsively started 

motions, body forces and inertial terms are initially negligible compared with the 
pressure gradients and acceleration of the fluid. Thus, during that stage, a 
Boussinesq rotating stratified fluid ignores both rotation and stratification. Its 
motion is irrotational, for the Euler equation becomes 

Closely related with this reasoning is the controversy which, forty years ago, arose 
about the question of initial conditions for rotating or stratified fluids. Some authors 
(such as Stewartson 1952) take as initial the state of rest of the fluid ; others (such as 
Morgan 1953) claim the only valid initial conditions to be the irrotational motion 
(B 1) .  The second approach, although it may involve somewhat lengthy calculations, 
remains the more widely used one. In  fact, the controversy is but a matter of 
terminology: zero initial data correspond to t = 0-, just before the start of the 
motion, and irrotational initial data to  t = O,, just after the motion has begun. Any 
approach which is based upon generalized function theory naturally incorporates the 
discontinuity at t = 0 and, whatever initial conditions are chosen, yields the same 
motion for the fluid, for t < 0 causal and for t > 0 initially irrotational. 

This we noticed in dealing with the Green's function and can prove in a more 
formal way by considering Sekerzh-Zen'kovich's (1982) solution of the Cauchy 
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problem for Boussinesq internal waves. For a causal mass source m(r,  t ) ,  and initial 
data 

the radiated internal waves (expressed in terms of the internal potential) are given 
by 

$(r , t )  = ~d7Sd3r’m(r’,r)G(r-r’, t - 7 )  

For a point impulsive source releasing a unit volume of fluid, the internal potential 
reduces to the Green’s function. Now, if the initial state of the fluid is taken just 
before the impulse, a t  t = 0-, $Jr)  = 0, $l (r )  = 0,  m(r, t )  = 6(r) &(t) and G(r, t )  arises 
from the mass source term in (B 3) .  If, on the other hand, the initial state refers to 
t = O,, just after the impulse, irrotational initial conditions are $,(r) = 0 and 
Ilrl(r) = - 1/(4nr) ,  whilem(r, t )  = O;G(r, t )  arisesnow from theinitialdatatermin (B 3) ,  
by virtue of V2( l / r )  = -4n&(r). Thus, the equivalence of both approaches is proved 
for the Green’s function. As any internal wave field may be built by a superposition 
of elementary impulses, this conclusion is at  the same time proved from a general 
point of view. 

Appendix C. Another kind of asymptotic expansion 
Alternative large-time expansions of the Green’s function follow from expanding 

G(r, w ) ,  in the vicinity of singularities such as fw,, in terms of {w2-wi } i  instead of 
{ w - w , } ~ .  A necessary condition for the validity of this procedure is, however, that 
G(r ,w)  have the same expansion near opposite frequencies. This is not a trivial 
restriction since, according to (5 .3) ,  the square roots involved are not even functions 
of frequency. 

In this way we obtain for the Boussinesq Green’s function, applying (D 6 )  to (6 .1) ,  

H ( t )  Jo(Nt). aGl3 A ( r , t )  - - 
at 4nr sin 8 

To leading order in (Nt)-i,  (6.15) and (C 1)-(C 2 )  of course coincide. Hendershott 
(1969) derived, for the transient gravity waves generated by a pulsating sphere 
(equation (39) of his paper), an expansion of this type. To leading order his result 
(with the appropriate slight modifications), upon which he bases his investigations of 
monochromatic internal waves, differs from ( 8 . 3 3 ~ ) .  In particular when a + A, it 
does not reduce to the point source result (6.15). This seems to be attributable to the 
omission of the above condition. 

In the non-Boussinesq case we obtain for gravity waves, applying (D 7) to (5.2), 

4 d r  sin 8 4 sin2 8 G,(r , t )  ‘V - 

16 FLM 231 
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To leading order, as Nt 9 1 with ,Br fixed, (C 3) coincides with (6.20) ; i t  reduces, when 
8 x in, to Dickinson's (1969) formula (76). For gravity waves the non-Boussinesq 
internal wave front may consequently be approximated by the torus $?r = Nt sin 0 
which also defines, according to (6.22), the region of validity of the Boussinesq 
approximation. 

Appendix D. Some inverse Fourier transforms 

been used: 
I n  this paper the following Fourier transforms F(w)  and original functionsf(t) have 

F ( w )  f(t) 
( t )  (D1) wn e-inn/z&(n) 

1 
- (n  + 0) 
wn 

wa (a non-integer) 

1 
wa 

1 

- 

w2 - w; 

1 
{w' - w;>t 

sin arc T(a + 1) -ian/2 
-H(t)-- e 

7t t"+' 
ta- 1 

H (  t )  To eian/2 

sin wo t 

w0 

- H ( t )  - 

exp[ - ito{w2 - w;>f] 
("2-w;)f 

iH(t-to) Jo[wo(t2-ti)f] 

exp[ - i( a2/4t - ;7t)] 
(7tt)h 

H ( t )  

exp( - aw+) ein/4 m e-3inn/4 xt 
H ( t ) 7  c - ( azt)n'2. 

w+ (7tt)znn=o n!  rr+) 

Here n represents a non-negative integer and a, wo and to positive real numbers. 
In  accordance with (3.16)-(3.17), Fourier transforms are defined by 

F ( w )  = f(t)  e-i"tdt = FT[f(t)], (D 10a) s 
1 

f(t) = +(w)  eiwtdw = FT-'[F(w)]. (D 106) 

They are related to  Laplace transforms by 

f(t) = FT-l[F(w)] = LT-'[F( -is)], (D 11)  
where s denotes the complex variable involved in Laplace transforms. 

Three methods, described in greater detail by Voisin (1991), have been used to 
derive formulae (D 1)-(D 9) :  reproduction from Lighthill's (1958, p. 43) table of 
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A Im w 

Re w 

FIGURE 12. Original integration path (dotted line), and steepest descent contours (heavy line;), for 
the asymptotic expansion of (D 12). The saddle points w1 and w2 are situated a distance ( 4 2 4 5  from 
the origin wI = 0 which makes no contribution to the expansion. 

Fourier transforms, application of the residue theorem, and combination of various 
integrals given by Gradshteyn & Ryzhik (1980) and Abramowitz & Stegun (1965). 
Equation (D 2) differs from Lighthill's corresponding result, defined as a principal 
value. Most of the inverse Fourier transforms may also be derived from the tables of 
inverse Laplace transforms of Abramowitz & Stegun (1965, ch. 29) or Dickinson 
(1969), by applying (D 11). 

The exact inverse transform (D 9), a power series of ti, is of little interest as a large- 
time expansion. So, rather, we evaluate it asymptotically, by the method of steepest 
descents (cf. Bleistein 1984, ch. 7). Consider more generally 

where 
6 

Among the three critical points of the integrand, 

only the two saddle points w1 and w2 contribute to the asymptotic expansion. The 
paths of steepest descent through them stretch out from zero to infinity along the 

18-2 
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positive imaginary axis (figure 12). Once the original integration path has been 
deformed, we find 
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